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Preliminary results from a 3 x 3 micromachined millimeter-wave focal-plane imaging array with su-

perconducting tunnel junctions as mixing elements are presented. The array operates in the 170-210

GHz frequency range. The micromachined array is mechanically robust and the SIS devices are

sufficiently cooled. Uniform DC I-V characteristics of the different elements have been measured.

We have implemented integrated tuning structures which show a 3-dB bandwidth of 70 GHz when

the junction is used in a video detection mode. Preliminary noise measurements on two of the array

elements resulted in lowest DSB noise temperatures of 83 K (@182 GHz) and 125 K (@184 GHz),

with a bandwidth of 32 GHz and 20 GHz respectively.

1 Introduction

Imaging arrays of SIS-receivers are of great benefit for the observation of spatially extended sources in astronomy,

but the high cost and mechanical difficulties of building an array of waveguide mixers and the poorer beam-quality

of open-structure antennas have thus far limited the efforts of actually developing such arrays [1, 2, 3, 4, 5].
SIS-mixers made with micromachined horn antennas offer both a relatively easy, low cost fabrication and excellent

Gaussian beam properties and are therefore well suited for the development of imaging arrays. Because of the

specific structure of the micromachined horn antenna, interference of IF and DC-bias lines with RF antenna is
avoided and also there is no limitation on the element spacing, which are problems of concern in waveguide

and open structure antennas. Further advantages for the use of micromachined horn antennas in high frequency

imaging arrays are the absence of substrate losses, and the possibilities of integrating a mixing element with super-

or semi-conducting electronics (e.g. SQUID IF-amplifiers or Flux-Flow oscillators) [6, 7, 8]. To demonstrate

the feasibility of micromachined horn antennas in imaging arrays we are cunenfly testing a 3 × 3 focal plane SIS

imaging array for the 170-210 GHz frequency range (the choice of the frequency range is mainly determined by

the availability of the Local Oscillator and the dimensions of the cryostat). In parallel we have developed two
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Figure l: (a ) Overview of assembly of the micromachined horn. (b) Details of a single element of the micromachined

array, showing the pyramidal cavity, the membrane, the through holes for the IF/DC connections, and the dipole
antenna.

room-temperature imaging arrays with thin-film Nb as bolometers for the 70-1 I0 GHz and 170-210 GHz frequency
range [9].

Micromachined horn antennas consist of a dipole antenna fabricated on a thin (,_ 1 pro) SisN4 dielectric
membrane inside a pyramidal cavity etched in silicon (see Fig. 1)[10, ! 1]. We previously developed a single-
element micromachined SIS receiver for the W-band frequency range, which showed a sensitivity comparable to
the best waveguide and quasi-optical open-structure receivers [12].

This paper describes the design and fabrication of the 3 x 3 170-210 GHz imaging array receiver and preliminary
noise measurements on the array performance.

2 Receiver Design

The array receiver can be divided into four main parts: the machined horn array, the micromachined array, the
magnet, and the IF-output/DC-bias board. An expanded view of the receiver and some details of the individual
elements are shown in Figs. 2, 3, and 5.

2.1 Micromachined array

The micromachined arrayis made of a stack of 4 Si wafers with a total thickness of 1.7 ram. The dipole antenna on
the membrane is 0.58 mm long (0.37)Q. In order to have access to the contact pads on the device wafer, through
holes are etched in the two wafers forming the apex of the horn (seeFig. 1). A detailed description of the individual
micromachined antenna elements and the quasi-integrated horn antenna is given in [13, 14]. The stack of Si wafers
forming the micromachined section is aligned with a small x-y-0 stage and thejug for holding the machined horn
array. The jug and the alignment stage are positioned with respect to each other with dowel pins. To align two
wafers to each other, the wafers are mounted with bee-wax to the alignment stage and to a microscope slide glued to
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Figure 2: Expanded view of the array receiver showing

the machined horn array, the micromachined array, the

magnet, and the DC/IF-board

the jug. After alignment a small amount of superglue is used to bond the wafers together. The stage is then heated
to remove the stack of wafers from the microscope slide. A similar procedure is used to align the micromachined

array to the machined array. A typical accuracy of alignment is 20-40/Jm.

Two serially connected Nb/AI203/Nb SIS junctions are used as mixer element whose resistance is matched to

the 35-[2 real impedance at the dipole antenna terminals. Typical devices fabricated at the University of Virginia
facility have an area of 2.5/_m 2 and a maximum current density of 10 kA/cm 2. For our design, junctions with

a current density of 5 kA/cm 2 are required. To optimize the radiation coupling to the capacitive SIS devices,

two different types of on-chip tuning structures are implemented, as shown in Fig. 3a. The first type uses an

inductive length of microstrip line shorted with a low impedance M4 stub. The low impedance stub has a 90 nm
thick (_r = 40) N1_O5 dielectric and has dimensions of 10x35 pm'. The microsuipline is 6 pm wide and its

characteristic impedance is 10 £1 for a 300 rim, _r=5.6 SiO dielectric layer. Microstrip lengths of 43/zm and

53/zm are used to accommodate variations in the fabrication process. In the second type of tuning structure a

capacitive short of the coplanar feedlines of the antenna is used to form an inductive shunt similar to the tuning
structure described in Ref [ 15]. The dimensions oftbe capacitive short are 20 x 10/zm 2 (with a 90-rim thick NbzOs

dielectric) and distances of 15 and 17 pm between the junction and the edge of the cap, tot are implemented.

The size of a single array element on the device wafer is much smaller than the element spacing and the vacant



I Two section
tuning circuit

/\
II

/

- -_lOOpF

zo=- o d

Figure 3: (a) Details of the two different types of tuning structures incorporated in the mask design, l:two-section
stub. ll:capacitively shorted coplanar stub. (b) T-bias circuit.

space on the device wafer is filled up with additional array elements to a total of 36. The positioning of the aperture
and backing wafers selects the nine elements forming the array. In the current mask set, four different designs are
implemented in order to find an optimum design of integrated tuning structure. In a future design identical devices
will be implemented. A single fabrication run will then yield four identical 3 x3 arrays.

2.2 Machined Horn Array

The geometry of the machined horn section is similar to the diagonal horn described in Ref [16]. Arrays of diagonal
horns can be made with a high packing density and are relatively easy to fabricate on a milling machine with a
split block technique. The array is formed by a stack of six gold plated tellurium copper blocks and fabricated at
MIT Lincoln Laboratory. To assure the alignment of the separate blocks during the fabrication, a fixture is used in
which the blocks are positioned by two dowel pins and mounted under a compound angle. Fabrication of machined
arrays for frequencies up to a THz seems to be feasible.

2.3 Optics

As shown in Fig. 2, the minimum spacing of the individual elements of the array is determined by the
aperture dimensions of the machined diagonal horn section. For the 200 GHz array the element spacing is 6.5 mm,
which is -,, 3.5 beam waist (the l/e 2 beam angle of the horn is 16°). The angular separation Or of the parallel
beams from the array, separated by a distance d, in combination with a lens or reflector of focal length f is _ d/f,
whereas the 3dB beam angle 03dB of a beam with input beam waist win is 0.59 Win/f. A maximum sampling of
the sky requires a 3 dB beam overlap and thus Or - 2 0_ which gives an element separation of d = 1.18 Win.
Our array therefore undersamples the sky, as any horn array will do since the beam waist of the horn is always
considerably smaller than the aperture dimensions of the horn [2].

Quasi-integrated horn antennas can be used as a feed for reflector antennas without additonal lenses. Because

of the limited diameter (5 cm) of the 77 K heat filter (8 5 mm thick PTFE disk) and the dewar window (a 25 pm
thick sheet of polypropylene) in the measurement set-up, a PTFE lens with a focal lenght of 37 mm is used in our
set-up, to avoid truncation of the array beams. This lens is at 4.2 IC A second lens (at room temperature) with
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Figure 4: Optics for the 200 GHz SIS imag-
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a focal length of 100 mm is used to form a gaussian telescope (See Fig. 4). The combination of the two lenses

forms a slightly magnified image of the array elements at a 20-cm distance in front of the dewar. This lens set-up

is convenient for our test receiver, since we can use a small hot/cold load for the heterodyne measurement and the

array is reasonably uniformly illuminated if we use a beam splitter between the two lenses to couple the LO.

2.4 Magnet and DC-IF Board

A single magnet coil (made of copper) with approximately 2500 turns of superconducting 100/zm thick Nb wire

(Supercon T48B) is used to suppress unwanted Josephson effects. The geometry of the micromachined array allows

the magnet to be in very close proximity of the junction (,,, 1.5 ram). Although the positioning of the magnet (with

the magnetic field lines perpendicular to the junction surface) is not preferable, a magnet current of 200-300 mA

is sufficient to suppress Josephson effects. The magnet produces a non-uniform magnetic field over the area of the

array. Small permanent magnets or magnet coils located in the core of the magnet could be used to correct for this

non-uniformity, but are not implemented yet.
In order to have local access to the array elements, through holes are etched in the backing wafers. This avoids

the use of long coplanar lines on the device wafer (to bring the signals to the border of the wafer) and thereby

increases the available space for mixer elements, reduces possible cross-talk between the different elements, and

increases the flexibility of the receiver design. Contact between the array elements and the DC./IF board is made

by a modified spring loaded contact pin and a short section of semi-rigid cable in which the center conductor is

replaced by a spring loaded contact pin. The spring loaded contact pins are modified by curing offtbe sealed end

of the pin and extracting a part of the spring located inside the pin. This spring is then used as a flexible contact,
instead of the original head. To ensure a reliable contact between the contact pads and the spring contact, the small

cavities formed by the through holes in the backing wafers are filled with silver epoxy. The contact pin and the

section of semi-rigid cable are mounted in feed through holes in the core of the magnet coil (see Fig. 5). For each

array element, one contact pad is connected to the common ground (the core of the magnet) while the other contact
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Figure 5: Details of the receiver assembly

pad is connected to the DC-IF board via the section of semi-rigid cable. The use of the feed through holes in the

copper core of the magnet provide an effective way of shielding IF contact pins for the different elements from
each other. In a previous design (without a magnet) severe cross-talk and spurious noise effects were observed in
the IF-output signals

The IF/DC-board is made of Duroid 6010 material and conchs a T-bias circuit for each arrayelement. Contact
between the contact pins and the microstrip line and groundplane on the IF board is made by using tight fitting
sockets, soldered on the IF-board. Details of the T-bias design are shown in Fig. 3b. A 50-_ microstrip line
(width=1170/Jm) (DC blocked with a 22 pF chip capacitor) connects on one end to the center conductor of a

SMA connector and on the other end with the socket for the contact pin. The DC-bias is applied via a 100-Q _/4
line (w=152/_m, 1=21 ram), capacitively shorted with a 100 pF capacitor (and a 10-k_ resistor, to avoid charge
build-up).

The array operates with a single IF-amplification stage. Noise measurements on different elements of the
array are done by connecting the IF-amplifier to the different IF-ports on the DC/IF Board. The cold stage of the

IF-chain consists of a Pamtech LTE 1268K isolator, and a Berkshire Technologies L-I.5-30HI IF-amplifier (40
dB). A further amplification of 60 dB is provided by room-temperature amplifiers outside the dewar. The IF-power
is measured in a 35 MHz bandwidth with an HP-436A power sensor at a center frequency of 1.25 GHz (set by a
tunable bandpass filter).

3 Device fabrication

The micromachined SIS arrays are made partially at M1T Lincoln Lab and partially at the University of Vh'ginia.
The SIS devices are fabricated on 0.38 nun thick (100)-oriented sificon wafers, covered on both sides with a l-pro
thick, low-stress Si3N4 layer. The first fabrication step is a reactive ion etch to define the apertures on the aperture
side of the wafer, which will later serve as tl_ etch mask in the anisotropic KOH.etch. The next step defines marks
(with an Au lift-off) on the other (device) side of the wafer, that are references to the apertures. The patterning of
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Figure 6: (a) DC I-V curve of 7 SIS devices of the 9 element array. (b) Measured antenna beam txmenu for two

elements on the diagonal of the imaging array. The inset shows the device numbering.

these marks is done using an infrared mask aligner. The marks serve as alignment marks for the antenna definition.

The wafers are then shipped to UVA, where the antennas and SIS junctions are fabricated with a modified Selective

Niobium Etch Process, described in [17]. Back at MIT the chip is mounted in a Teflon KOH etching mount which

isolates the front and back sides of the wafer by sandwiching the wafer between two o-rings. The freestanding

membrane is formed by etching the silicon in a solution which contains 20% KOH by weight at 80 °C for 4-5 hours

and another hour at 60 °C. The last step is used to create smooth sidewalls of the aperture. The final fabrication

step is the deposition by E-beam evaporation of a 400-nm Tt/Au layer on the sidewalls of the aperture through a
ceramic shadow mask.

4 Results
4.1 DC measurements

A uniform noise performance of the different elements in an array receiver for astronomical observations is of major

importance, since an increase in noise temperature of one or more of the elements rapidly reduces the advantage of

using an array receiver. This is of special concern for micromachined and quasi-optical array receivers, where one

defective element requires replacement of the whole device wafer.
We have thus far tested one device wafer, and results of the DC I-V measurements of 7 SIS devices in the array

are shown in Fig. 6a (in this measurement the cryogenic DC contact was not optimized yet. and two devices lost

contact during cool-down). The measurements are performed with the mixerblock mounted in the vacuum dewar

(at a bath temperaure of 4.2 K). As shown in Fig. 6a the I-V characteristics are fairly uniform, with a 35 - 40 t_

junction resistance range. The individual elements of the array are sufficiently cooled and show no gap reduction
in comparison with an I-V measurement in a LHe bath. Since the overall noise performance of an SIS receiver is

not very critical to small changes in subgap current or device resistance, the device uniformity shown in Fig. 6a

should be sufficient to obtain a uniform noise performance.



4.2 Antenna Pattern Measurement

As a preliminary test of the antenna patterns of the separate elements in the array, the 45-degree antenna patterns

of two elements are measured at a frequency of 182 GHz. The 45-degree plane antenna are obtained by measuring

the video response of the elements while rotating the dewar with a rotation stage. Due to the 45 degree angle of

the array with respect to the optical table, a combined co- and cross- pola/isation is measured. The two elements

are at the center and outermost postion on the diagonal of the array, with the antenna beams parallel to the optical
table. In this measurement, only the cold lens inside the dewar is used. The measured antenna patterns are

shown in Fig. 6b, together with a Ganssian beam profile. The measured radial separation of the beams is 12.5 °.

and the 10 dB bcamwidth of the central beam is 6.8 °. Calculated values (using a thin lens approximation) for

the beam separation and beam width are 14.4 ° and 5.2 °. respectively. The off-axis element is somewhat wider
and shows a non-symmetric shoulder at -17 dB, which we auribute to abberntions caused by the lens. Previous

measurements of single element quasi-integrated horn antennas [ 11] and single element [18] and arrays of diagonal

horns with waveguide feeds [16] have shown excellent Ganssian antenna beam profiles at frequencies close to 1

THz. Although more thorough tests of the beam patterns of the array have to be performed, our measurements
indicate the applicability of quasi-integrated horn antennas in array receivers.

4.3 FTS measurements

The frequency response of the different integrated tuning structures is measured with a Fourier Transform Spec-

trometer (FTS). The FTS uses a Hg-arc lamp as the broadband millimeter wave source, and is operated in the

step-and-integrate mode. In these measurements the devices are biased at a voltage just below the gap voltage and
used as a video detector. Fig. 8a shows the result of the measured frequency dependent coupling of three different

integrated tuning structures, together with the coupling of a device without integrated tuning structure ([ ! 4]). The

two section stub with a stub length of 53/Jm shows a large increase in bandwidth in comparison with the device

without an integrated tuning structure. The peak in the response of this device around 180 GHz is a result of the

optimum coupling of the dipole antenna at this frequency. The origin of the observed peak at 300 GHz, which is

also observed for the tuning structure with a 43/zm stub length, has not been identified. The tuning stucture with

a capacitive short located on the coplanar feed line at 17/Jm from the junctions has an optimum coupling at 130
GHz.

4.4 Noise measurements

Results of heterodyne measurements with two elements of the array with the 53-/Jm long two-section tuning stub

are shown in Figs. 8 and 7b. The signal and LO-power are combined by a 97% transmission beam splitter and the

IF-power is measured in a 35 MHz bandwidth at a center frequency of 1.25 GHz.

Fig. 8a shows the pumped DC I-V curve and IF-output power of device #4 (see the inset of Fig. 6b for the
numbering of the device location) measured at a 182 GHz LO frequency. The maximum Y-factor (measured at

the first photonstep below the gap voltage) is 3.7 riB, which results in a 83 4- 3 K DSB receiver noise temperature

(without any correction). Analysis of the receiver noise temperature shows that the mixer gain is -1.4 :L-0.8 dB and
the mixer noise temperature is 23 4- 8 IL The IF amplifier noise is 13.6 K (calibrated with the shot noise of the

unpumpedjunction), which gives a total noise contribution of the IF stage of 30 IL The manufactmers specification

of the amplifier noise is 4-5 K, which indicates that the current IF-coupling scheme can be substantially improved.

Fig. 8b shows the pumped DC I-V curve and IF-output power of device #7 measured at a 184 GHz LO frequency.

This element has a minimum receiver noise temperature of 125 K DSB. As can be seen in Fig. 8a and b, there
is a significant difference in the behaviour of the elements under irradiation with LO-power. Device #4 shows

photon steps with a width of 2 ×/k_/e, as expected in a series array of two junctions; whereas device #7 shows no
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clear photon steps below the gap voltage and a structure in the IF-output power of widthru_/e. We contribute this
undesirable effect to a non-uniform division of the applied DC-bias voltage and LO-power accross the series array

of junctions. At frequencies where the geometric capacitance of the junction is tuned out by the integrated tuning

circuit, the junction RF-admittance is determined by the quantum susceptance. Since the quantum susceptance is
a sensitive function of bias voltage (especially near the gap voltage), small differences in bias voltage between the

two junctions could have a significant effect on the coupling of LO-power. Use of single junction mixers will avoid

this type of non-uniformity.
The measured noise temperature as a function of frequency for these devices is shown in Fig. 7b. The 3-dB

noise bandwidth for elements #4 and #7 is 32 GHz and 20 GHz respectively. We conlribute the difference in the
measured bandwidth to the different behaviour of the mixer elements, as explained in the previous paragraph. In a

previous measurement on a single element mixer with a backing plane tuned antenna, a bandwidth of 6 GHz was

measured [ 14], showing the effectiveness of the integrated tuning structure in the current design.
Current state-of-the-art waveguide receivers for the 230 GHz asu'onomy band have DSB noise temperatures

of 35-50 K [19, 20, 21]. With a further optimization of the IF coupling and the use of single junction mixer
elements, the fabrication of micromachined arrays with a competitive noise temperature for each array element

seems feasible. Furthermore, the scalability of the machined and micromachined sections show the promising

prospect for the use of micromachined focal plane imaging arrays for frequecies up to 1 THz.

5 Summary
We have described the design and fabrication of a SiS micromachined 3 x 3 focal plane imaging array for the

170-210 GHz range. Measurements show that the micromachined array can withstand thermal cycling and that

the devices are sufficiently cooled. Uniform DC I-V characteristics of the different elements have been measured.

The use of integrated tuning structures significantly improved the bandwidth of the mixer. Preliminary heterodyne
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Figure 8: (a) Pumped !-V characteristics of element #4 at a LO frequency of 182 GHz and the measured IF-output
power with a 295 and 77 K input load. (b) Same measurement as in a, but for element #7 and a LO frequency of
186 GHz

noise measurements on the array elements showed a lowest DSB noise temperature of 83 K with a 3-dB bandwidth
of 32 GHz.
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